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Summary The soil water regime in a crop root zone is critical to crop growth. Under-
standing the dynamics of the soil water regime is a prerequisite to proper irrigation man-
agement. However, due to the random nature of weather conditions, the soil water
regime tends to be highly variable, which makes irrigation scheduling a difficult task.
To better characterize the dynamic variability of soil water regime, we developed a sto-
chastic model of soil water storage (SWS) by treating the evapotranspiration (ET) as an
explicit random process. While developing this model, first of all, a root zone water bal-
ance model for SWS was established, parameterized, and validated with lysimeter data
collected at Yucheng comprehensive experimental station (YCES) in Shandong Province,
North China. We then employed 14 years of daily meteorological data collected at YCES
to compute the daily reference evapotranspiration (ETr) data series and performed time
series analysis, established a discrete AR(1) model for ETr and derived its continuous form
by employing an even point sampling hypothesis. The stochastic model of SWS was formu-
lated by incorporating the continuous AR(1) model into the deterministic model of SWS,
which results in a system of two first-order temporal stochastic differential equations.
Further, the Fokker–Planck equation of the probability density function (PDF) of SWS
was derived and solved numerically. Consequently, the joint PDF of SWS and ETr, the mar-
ginal PDF,mean, and deviation of SWS were obtained. These numerical solution results
compare favorably with two years of SWS measurements. This indicates that the stochas-
tic model can be a useful tool for irrigation scheduling and the associated risk assessment.
ª 2006 Published by Elsevier B.V.
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Nomenclature

Notation
A(1) continuous first-order autoregressive model
AR(1) discrete first-order autoregressive model
C constant in soil water stress coefficient
ETr reference evapotranspiration mm d�1

I irrigation density mm d�1

Kc crop coefficient
Kcm maximum value of crop coefficient
Ks soil water stress coefficient
P rainfall density mm d�1

S dimensionless soil water storage
V continuous form of the normalized residual of

reference evapotranspiration
Vt discrete form of the normalized residual of ref-

erence evapotranspiration
W soil water storage in root zone, mm
Wc critical soil water storage defined in percolation

formulation, mm
Wf field capacity, mm
e(t) continuous white noise process of normal distri-

bution

et discrete white noise process of normal distribu-
tion

l(t) Weiner process
r1 standard deviation of e(t)
r2 standard deviation of e(t)
r10 initial standard deviation of S
r20 initial standard deviation of V
S0 initial mean of S
V0 initial mean of V
Q lower boundary flux of main root zone, mm d�1

t time, day of year
A(j), B(j), j = 1, 2 Fourier coefficients in ETr mean analy-

sis
SA(j), SB(j), j = 1, 2 Fourier coefficients in ETr and STD

analysis
p order of AR model
ck partial correlation coefficient with lag time k

days
qk Auto-regression coefficient with lag time k days
/j, j = 1, 2,. . ., p Auto-regression parameters in AR(p)

model

2 Y. Luo et al.
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Introduction

The soil water regime in the root zone is critical to crop
growth. Understanding the dynamics of the soil water re-
gime is a prerequisite to proper irrigation management. In
practice, the root zone water balance equation is commonly
used to predict soil water storage (SWS), which, at any
time, changes with the net balance of inputs (precipitation,
irrigation, upward movement of water to the root zone) and
outputs (evapotranspiration and drainage) when the lateral
flow can be neglected. Due to the uncertainty in knowledge
of precipitation and evapotranspiration (ET), it is difficult to
close the water balance by measurement, and subsequently
the change of SWS is also a random process. Many efforts
have been made to quantify the uncertainty of precipitation
and ET and their role in modeling of SWS as a stochastic pro-
cess. These efforts can generally be grouped into two types
of approaches. The first approach takes into account only
the randomness of precipitation in the root zone water bal-
ance equation while treating ET as a deterministic variable.
Examples of this approach include Cordova and Bras (1979),
Cordova and Bras (1981), Milly (1993), Rodriguez-Iturbe
et al. (1991), Rodriguez-Iturbe et al. (1999), Laio et al.
(2001), and Porporato et al. (2004). In situations where
the uncertainty in estimating precipitation is insignificant
and most of the randomness in SWS is caused by the fluctu-
ation in other weather factors, such as wind speed, solar
radiation, and temperature, many have adopted the second
type of approach, in which precipitation is regarded as a
deterministic variable while ET is modeled as stochastically.
For example, Aboitiz et al. (1986) combined a stochastic
representation of ET into the soil water balance equation
and employed the state-space equation theory and Kalman
filter to set up a comprehensive soil moisture estimation
and forecasting framework. Similar work was also done by
Please cite this article in press as: Luo, Y et al., A stochastic m
doi:10.1016/j.jhydrol.2006.11.003
T
E
DOr and Groeneveld (1994) in stochastic estimation of

plant-available soil water with a fluctuating ground water
table. In the current paper, we study the stochastic charac-
teristics of SWS in a heavily irrigated winter wheat field in
North China Plain where an improved irrigation manage-
ment program is needed. During the growing season of win-
ter wheat in this region, from October till May next year,
the precipitation is far less than crop evapotranspiration.
We therefore adopt the second approach, consider precipi-
tation a deterministic variable, and treat ET as the random
process. In the works of Aboitiz et al. (1986) and Or and Gro-
eneveld (1994), reference evapotranspiration, ETr, was
modeled with a discrete time series analysis and the SWS
with a discrete state-space equation. Variance of the pre-
dicted SWS was obtained but the probability distribution
was not. In irrigation scheduling, the characteristics of
SWS, including its mean state, variation, and possible varia-
tion range at certain confidence levels, are all important to
decision makers. Revealing the probability distribution of
SWS and its evolution with time will help to understand
the stochastic characteristics of the soil water regime.
Therefore, the goal of the current paper is to (1) derive a
stochastic model of SWS in the crop root zone; (2) compute
the evolution of the probability distribution, mean, stan-
dard variation of SWS; and (3) reveal the stochastic behavior
of SWS as influenced by the randomness of estimating
evapotranspiration.

Model development

Conceptual model of SWS

Soil water balance equation

The water balance equation is commonly used to estimate
soil water storage in crop root zone. In arid or semi-arid
odel of soil water regime in the crop ..., J. Hydrol. (2006),
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Figure 1 Diagram of the weighing lysimeter system.
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North China Plain, due to flat topography and insignificant
rainfall, the water balance equation can be simplified since
surface runoff and lateral soil water flow rarely happen in
cropped fields. Therefore, the soil water balance equation
in the root zone can be simply expressed as follows:

dW

dt
¼ P þ I� ET� Q ; ð1Þ

where W is SWS (mm), P and I are the effective rainfall and
irrigation intensity (mm d�1), ET is the actual evapotranspi-
ration rate of the crop (mm d�1), Q is the soil water flux to
or from the crop root zone (mm d�1), and t is time (d).

ET is often computed from the reference evapotranspira-
tion (ETr), a dimensionless crop coefficient Kc and a soil
water stress coefficient Ks as (Allen et al., 1998)

ET ¼ KsKcETr: ð2Þ

The crop coefficient is often expressed empirically as a
function of leaf area index (LAI) or crop development time.
The following formula is adopted here for Kc (Ouyang and
Luo, 2002)

Kc ¼ Kcm exp �ðt� tmÞ2

C2
m

" #
; ð3Þ

where tm is the time when Kc reaches its maximal value Kcm,
and Cm is the shape factor. Kcm, tm and Cm can be deter-
mined empirically from field experimental data.

Ks is often expressed as a function of the plant available
soil moisture content. Here, it is simply taken as function of
W (Luo et al., 1998)

Ks ¼
W

W f

� �C

; ð4Þ

where Wf is soil water storage at field capacity in the root
zone (mm), and C is an empirical positive constant related
to soil properties.

Q represents the soil water flux at the lower boundary of
the root zone. A positive value indicates drainage and a neg-
ative value the upward movement of water into root zone.
The following empirical formula is adopted here for Q (Ouy-
ang and Luo, 2002):

Q ¼ a
W

W f

� �b

ðW �WcÞ; ð5Þ

where a and b are empirical constants that can be derived
from experimental data, and Wc is a threshold SWS value re-
lated to soil properties that can also be determined with
field data.

Parameterization of soil water balance equation

In the current study, we employ measurements from a
weighting lysimeter to determine the parameters (Kc, Ks,
and those in Q) of the water balance equation given in the
above section. This weighing lysimeter was constructed in
1990 at Yucheng Comprehensive Experimental Station
(YCES) in Shandong Province, North China. The lysimeter
was built in the middle of a 1.0 · 106 m2 cultivated field
and put into operation in 1991. The basic components of
the lysimeter are illustrated in Fig. 1. Component (I) is a
steel soil cylinder with a surface area of 3.14 m2 and a soil
profile with depth of 4.5 m overlying 0.5 m of fine sand.
Please cite this article in press as: Luo, Y et al., A stochastic m
doi:10.1016/j.jhydrol.2006.11.003
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OThe above ground part is 0.05 m in height. The steel cylinder
was inserted into the soil during the construction of the
lysimeter. Therefore, the lysimeter is filled with undisturbed
soil. A neutron probe access tube (IV) is installed in the col-
umn. The soil column rests on a sensitive weighing system (V)
which is capable of measuring the total mass up to 35 tons
with accuracy of ±60 g. A Marriott system (II) is connected
to the soil column to control and record the water table in-
side the lysimeter, and measure the amount of water that is
supplied to the soil column and/or leaks out of it. Gravity
drainage is collected by a drainage tank (III). The measure-
ments recorded in this lysimeter system include the weight
change of the soil column, water leakage from or water sup-
ply to the soil column, and the irrigation and/or rainfall
amount. The total ET, at certain time intervals, from this
lysimeter can be computed based on these measurements
through a water balance approach. Generally, observations
are made at 08:00 and 20:00 each day. The weighing system
is checked and recalibrated every year.

The soil moisture profile in the lysimeter was measured
with a neutron probe every five days and prior to and after
each irrigation or rainfall event. Lysimeter data collected
during the growth season of winter wheat of 1993, 1994,
and 1997 were checked for reliability and employed in this
work for model parameterization and validation. Daily
meteorological data from the past 14 years recorded in
YCES were used to calculate the reference evapotranspira-
tion with the Penman formula (Liu et al., 1997; Allen
et al., 1998).

Parameterization of Q was done using the lysimeter data
of 1993. The water balance zone was set as 1.0 m below the
surface ground, over which more than 90% of the winter
wheat roots were distributed (Luo et al., 2003). Field capac-
ity for the root zone was taken as 320.0 mm in this 1.0 m
layer (Ouyang and Luo, 2002). Flux at the lower boundary
of the main root zone was calculated with the observed
SWS and ET. Eq. (5) was then fitted with the calculated low-
er boundary flux to obtain the constants a and b by the least
square estimation method.

Using the actual ET measurements of the lysimeter, Ks
and Kc were jointly determined by least squares optimiza-
tion. Of the parameters defined in Eq. (3), Kcm was specified
as 1.15 based on our previous work (Ouyang and Luo, 2002);
tm was predetermined as 111 days according to LAI
odel of soil water regime in the crop ..., J. Hydrol. (2006),
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Figure 3 The calculated daily ETr of 14 years.
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measurement results during the growing season of winter
wheat. It was hypothesized here that Kc reaches its maximal
value when LAI is the highest. C in Ks and Cm in Kc were also
determined by the least square estimation method.

In summary, we obtained following parameters as
C = 0.50, a = 0.05, b = 2.77, Wf = 320.0 mm, Wc = 260.0 mm,
tm = 111 d, Cm = 45, and Kcm = 1.15. Using these parameters,
we calculated the SWS change from t = 110 d to t = 155 d in
1993. Fig. 2 gives the comparison between the observed and
calculated SWS. The calculated SWS matched the observa-
tion points with an averaged relative error of 2% and the
highest relative error of 7.1% on day 120.

The water balance model and the parameters deter-
mined in this section form the basis of further stochastic
modeling of SWS. As we have explained before, in the cur-
rent study, we model the randomness of SWS during the
winter wheat growing season by primarily investigating the
stochastic behavior of reference evapotranspiration. Details
of stochastic modeling of reference ET, its incorporation
into the water balance model, and the final model solution
will be given in the following sections.

Time series analysis of the reference
evapotranspiration (ETr)

Efforts have been made to model stochastic evapotranspira-
tion in previous works (Aboitiz et al., 1986; Or and Groene-
veld, 1994), in which the daily reference evapotranspiration
(ETr) was described by a discrete moving average autore-
gressive model. To incorporate the stochastic model of
ETr into the continuous water balance model given in the
previous sections, a continuous form of stochastic ETr model
is required. In the current section, we take the following
steps to achieve this: (1) the seasonal trends of mean and
standard deviation of ETr were fitted with Fourier series;
(2) the seasonal trends were removed and the residuals nor-
malized with the mean; (3) discrete time series analyses
were performed on the normalized residual series; and (4)
with a hypothesis of fixed interval sampling of the daily
ETr, a continuous stochastic model of the residual ETr was
derived from the discrete residual series.

Mean and standard deviation of reference
evapotranspiration ETr

Daily reference evapotranspiration series of the past 14
years were employed here to investigate their stochastic
Please cite this article in press as: Luo, Y et al., A stochastic m
doi:10.1016/j.jhydrol.2006.11.003
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behavior. Fig. 3 plots estimates of ETr, as calculated from
weather records, showing a clear seasonal trend. ETr goes
up in spring time, reaches its maximum in summer, and then
gradually decreases from late summer to winter. Fig. 4
shows the mean and standard deviation (STD) of ETr.

Aboitiz et al. (1986) and Or and Groeneveld (1994) em-
ployed the first two-harmonics of a Fourier series to fit
the mean and STD of ETr as given by the following equation

ETrðtÞ ¼ ETr þ
X2
j¼1

AðjÞ cos 2pjt
365

� �
þ BðjÞ sin 2pjt

365

� �� �
; ð6Þ

rðtÞ ¼ rþ
X2
j¼1

SAðjÞ cos 2pjt
365

� �
þ SBðjÞ sin 2pjt

365

� �� �
; ð7Þ

where t is the Julian day, ETrðtÞ is the mean of ETr at day t,
ETr is the average of ETrðtÞ in a year, r (t) is the STD and �r
its average in a year, A(j), B(j), SA(j) and SB(j) are the
coefficients of the first two-harmonics of Fourier series,
which can be determined by the least square estimation
from the ETr statistics as given in Fig. 4. For our case, fitting
the parameters gives: A(1) = �1.54, A(2) = �0.40, B(1)
= 0.07, B(2) = �0.40, SA(1) = �0.41, SA(2) = �1.6, SB(1) =
0.32, SB(2) = �0.09, ETr ¼ 3:72 mm d�1, �r ¼ 0:48 mm d�1.
There is a very good agreement between the fitted curves
and the point mean and STD values of ETr shown in Fig. 4.

Time series analysis of ETr

To facilitate the time series analysis of ETr(t), here we de-
fine a new random variable Vt as given in equation (8) and
perform time series analysis on Vt to formulate a continuous
stochastic model of ETr:

Vt ¼
ETrðtÞ � ETrðtÞ

rðtÞ : ð8Þ

The mean and the standard variation of Vt are readily ob-
tained as

E½Vt� ¼ 0 E½VtVt� ¼ 1; ð9Þ

where E[ ] this is the expectation operator.

Discrete time series analysis of Vt

Here we adopt the classical time series analysis for fitting a
stochastic model of the Vt series. The partial and auto-
odel of soil water regime in the crop ..., J. Hydrol. (2006),
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correlation coefficients of Vt were calculated with the fol-
lowing formula (An et al., 1983):

ck ¼
1

M

XM�k
l¼0

VlVlþk; ð10Þ

qk ¼
ck
c0
; ð11Þ

where ck and qk are, respectively, the partial and auto-cor-
relation coefficients calculated over a correlation time
length of k day, and M is the number of sample points.
The value of c0 = 1.0.

Fig. 5 gives a plot of the partial correlation function ck
curve, which shows that it is truncated by an undetermined
correlation time length p. Fig. 6 plots the auto-correlation
function qk, which decreases exponentially with correlation
time. We therefore adopt an AR(p) model for the Vt series.
The general form of an AR(p) model is given as (An et al.,
1983)

Vt ¼ /1Vt�1 þ /2Vt�2 þ � � � þ /pVt�p þ et; ð12Þ

where /i, i = 1, 2,. . .,p, are the auto-regression parameters,
p is the order of the AR models, and et is a zero mean, nor-
mally distributed, random term. We adopt the moment esti-
mate method to determine auto-regression parameters /i.
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Figure 5 The partial correlation coefficient of the sample.

Please cite this article in press as: Luo, Y et al., A stochastic m
doi:10.1016/j.jhydrol.2006.11.003
T
E
D

P
R

O

The moment estimate method was chosen due to its sim-
plicity and ease of application in actual crop water manage-
ment. The values of /i, i = 1,2,. . .,p are determined by
solving the following set of equations:

1 q1 � � � qp�1

q1 1 � � � qp�2

� � � � � � � � � � � �
qp�1 qp�2 � � � 1

0
BBB@

1
CCCA

/1

/2

� � �
/p

0
BBB@

1
CCCA ¼

q1

q2

� � �
qp

0
BBB@

1
CCCA: ð13Þ

The order p can be determined through calculation of the
AIC (Akaike Information Criterion; An et al., 1983) as given
in Eq. (14). The smaller the AIC is, the better the AR model
fits to the Vt series.:

AIC ¼ lgr2
1 þ

2p

M
: ð14Þ

The deviation of et, r2
1 is estimated by the following

formula:

r2
1 ¼ c0 �

Xp
j¼1

/jcj: ð15Þ

Table 1 lists the estimated parameters of AR(p),
including the partial correlation coefficients ck, the esti-
mated r2

1, and the AIC values corresponding to different
p values.

Procedures for selecting a particular model order have
been given elsewhere, e.g., (Box and Jenkins, 1976; Salas
et al., 1980). From Table 1, when p = 1 the AIC has the
smallest value, hence an AR(1) model is chosen to represent
the Vt series, and Eq. (12) can be rewritten as

Vt � /1Vt�1 ¼ et: ð16Þ

The values of other parameters are /1 = 0.437 and
r2
1 ¼ 0:791:

Continuous time series analysis of Vt

Given the daily Vt series as described by Eq. (16) and assum-
ing that those daily series are samples of a fixed interval,
the continuous form of AR(1), termed as A(1), can be de-
scribed as (Pandit and Wu, 1983)

dVðtÞ
dt
þ bVðtÞ ¼ eðtÞ; ð17Þ
odel of soil water regime in the crop ..., J. Hydrol. (2006),
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Table 1 The estimated parameters of AR(p)

P 1 2 3 4

/i 0.437 0.094 �0.089 0.0321
r2
1 0.791 0.762 0.784 0.778

AIC �0.087 �0.078 �0.061 �0.049
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where V(t) is the continuous form of the discrete Vt series,
e(t) is a continuous, uncorrelated, normal distributed ran-
dom term with a zero mean, and b is given by the following
formula (Pandit and Wu, 1983:)

b ¼ � ln/1

D
; ð18Þ

where D is the sampling interval of the random series. For
the fixed interval daily Vt evapotranspiration series, D is
simply taken as 1 day.

The random term e(t) can be expressed as the time dif-
ferential of a Weiner process (Priestly, 1981; Wu et al.,
1994)

eðtÞ ¼ dlðtÞ
dt

; ð19Þ

where dl(t) is the increment of Wiener process, and its var-
iation is

E½dlðtÞdlðtþ dtÞ� ¼ r2
2dt ¼ 2Ddt; ð20Þ

with D being the white noise density, and r2
2 being the var-

iation of e(t) given as (Priestly, 1981)

r2
2 ¼

2br2
1

1� /2
1

: ð21Þ

Therefore, the continuous A(1) model can be described
by

dVðtÞ ¼ �bVðtÞdtþ dlðtÞ : ð22Þ

Eq. (22) is a typical linear Langevin equation that ex-
presses a first order Markov process. Assuming the initial
probability density distribution of V(t) is

fðV; 0Þ ¼ f0ðVÞ: ð23Þ

The probability density function of V(t) at time t has
been derived by Wu et al. (1994) as

fð1;vÞ¼ 1

j
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2p½1�expð�2vÞ�

p �
Z 1

�1
exp

½1�#expð�vÞ�2

2½1�expð�2vÞ�

( )
f0ð#Þd#;

ð24Þ

where

v ¼ bt; 1 ¼ jV
ffiffiffiffiffiffiffiffi
b=D

p
: ð25Þ

When f0(V) = d(V � V0), with V0 being the initial value of
V(t), the probability density function of V(t) becomes

fðV; tÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2p D

b ½1� exp ð�2btÞ�
q

� exp � b½V � V0 exp ð�btÞ�2

2D½1� exp ð�2btÞ�

( )
: ð26Þ
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The mean and variance of V can then be readily obtained
from Eq. (26) as

E½V� ¼ V0 exp ð�btÞ; ð27Þ

D½V� ¼ D

b
½1� exp ð�2btÞ�: ð28Þ

Both E[V] and D[V] are functions of time. As time t in-
creases, E[V] decreases and D[V] increases exponentially.
By defining two dimensionless variables s0 = 1/b and ts = s/
s0, and using Eqs. (11), (15), (27) and (28), the following re-
sults can be obtained.

D ¼ c0b ¼ b; ð29Þ
E½V� ¼ V0 exp ð�tsÞ; ð30Þ
D½V� ¼ 1� exp ð�2tsÞ: ð31Þ

As t equals to approximately 3s0, E[V] will approach zero
and D[V] becomes unit 1, i.e., the probability density func-
tion of V approaches steady state: the standard normal dis-
tribution. This conclusion can be validated by plotting the
accumulated probability distribution of the sampled Vt
points (+) and the standard normal distribution (line), as
shown in Fig. 7.

Stochastic modeling of SWS

The continuous form A(1) model of ETr residual series de-
rived in the previous section can now be easily incorporated
into the mass balance equation of SWS established in the
model development section . First, we replace Vt of the dis-
crete Eq. (8) with V(t) to obtain its continuous counterpart.
Via rearrangement of its terms, we obtain

ETrðtÞ ¼ ETrðtÞ þ rðtÞV : ð32Þ

The first and the second moment of V are

E½V� ¼ 0 E½VV� ¼ 1: ð33Þ

Substituting Eq. (32) into (2), and then into (1) results in
the following first-order stochastic differential equation
with V as the random input

dW

dt
¼ �½KcðtÞKsðWÞETrðtÞ þ Q � P � I� � KcðtÞKsðWÞrðtÞV

ð34Þ
odel of soil water regime in the crop ..., J. Hydrol. (2006),
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By defining a dimensionless variable S

S ¼ W

W f
; ð35Þ

and denoting

FðS; tÞ ¼ � 1

W f
½KcðtÞKsðSÞETp þ Q ðSÞ � P � I�; ð36Þ

GðS; tÞ ¼ � 1

W f
KcðtÞKsðSÞr: ð37Þ

We can rewrite Eq. (34) and combine it with Eq. (22) to
obtain the following differential equation set.

dS ¼ ½FðS; tÞ þ GðS; tÞV �dt
dV ¼ �bVdtþ dlðtÞ

ð38Þ

Denoting the joint distribution density function of S and
V by f (S,V,t), we can obtain the corresponding Fokker–
Planck equation of Eq. (38) in the sense of Ito as (Rodri-
guez-Iturbe et al., 1991; Wu et al., 1994).

ofðS;V ; tÞ
ot

¼ � o

oS
f½FðS; tÞ þ GðS; tÞV�fðS;V; tÞg

þ o

oV
½bVfðS;V ; tÞ� þ D

o2

oV2
fðS;V ; tÞ: ð39Þ

We regard S = 0, S =1, and V = ±1 as unrealistic condi-
tions, and hence set the boundary condition of Eq. (39) as

fð0;�1; tÞ ¼ fð1;�1; tÞ ¼ 0: ð40Þ

Further, we hypothesize that S and V are distributed
independently at the initial time. When no uncertainty of
measurement error in SWS and ETr is considered, the initial
condition of Eq. (39) can be given as

fðS;V ; 0Þ ¼ dðS� S0ÞdðV � V0Þ; ð41Þ

where d is delta Dirac function, S0 and V0 are the mean of
S and V, respectively, at t = 0. When taking into account
the measurement uncertainties in SWS and ETr and assum-
ing their initial distributions are approximately normal at
the range of interest and independent of each other,
the initial condition of Eq. (39) is more realistically given
as

fðS;V ; 0Þ ¼ 1ffiffiffiffiffiffi
2p
p

r10r20

exp �ðS� S0Þ2

2r2
10

� ðV � V0Þ2

2r2
20

" #
; ð42Þ

where S0 and V0 are the mean of S and V respectively, and
r10 and r20 are the STD of S and V, respectively.

Eq. (39) with boundary condition equation (40) and initial
condition (41) or (42) can be solved numerically. From the
joint distribution of S and V and their marginal distribution
density function, the first and second moment of S can be
obtained through the following integration:

fsðS; tÞ ¼
Z þ1

�1
fðS;V; tÞdV ; ð43Þ

E½S; t� ¼
Z 1

0

SfsðS; tÞdS; ð44Þ

D½S� ¼
Z 1

0

fS� E½S; t�g2fsðS; tÞdS; ð45Þ

where fs(S, t) is the marginal distribution function of S,E[S]
and D[S] are the mean and variation of S, respectively, both
of which are time-dependent.
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Results and discussion

The predictive algorithm as given in Eqs. (39)–(45) was ap-
plied to the simulation dynamics of soil water storage deple-
tion in the lysimeter of YCES during growing seasons of
winter wheat in year 1994 and year 1997, with rainfall and
irrigation as deterministic inputs. First we computed the
PDF of SWS numerically through an alternative direction im-
plicit finite-difference scheme (Lu and Guan, 1987; Lei
et al., 1988; Zill and Gullen, 2001), with parameters Kc,
Ks, and Q as given in the model development section. The
numerical simulation started with using the measured SWS
as the mean of the initial estimate of S after being normal-
ized by field capacity. The measurement errors of SWS were
considered by setting the initial STD of S as 0.01, which cor-
responds to a standard deviation of 3.2 mm of SWS measure-
ments. Also the mean and the initial STD of V were taken as
zero and 1, respectively. In our calculation, we treated the
irrigation and the effective rainfall as deterministic and dis-
crete events, both of which would occur and finish at a spe-
cific time t. We obtained a PDF of SWS at the intervals
between two irrigation and/or rainfall events, and assumed
the PDF just prior to and after an irrigation/or rainfall event
follows the same distribution. We took into account the ef-
fects of irrigation or rainfall on S in the mean of S, i.e.

D½S; t�jt¼tþ ¼ D½S; t�jt¼t� ; ð46Þ
fsðSþ IS; tþÞ ¼ fsðSþ IS; t�Þ; ð47Þ
E½S; t�jt¼tþ ¼ E½S; t�jt¼t� þ IS; ð48Þ

where t� and t+ symbolize left and right neighborhood of
time t, respectively, and IS is defined as

IS ¼ P=W f or IS ¼ I=W f ð49Þ

Subsequently, we derived the simulated mean and devi-
ation of W from that of S as

E½W ; t� ¼ W fE½S; t�; ð50Þ
D½W ; t� ¼ W2

fD½S; t�: ð51Þ

Using the in situ determined parameter values, the fore-
casting of SWS using this model requires no other data ex-
cept the inputs of rainfall and irrigation events. To
evaluate the performance of the proposed stochastic mod-
el, we compared SWS measurements from the lysimeter in
YCES to the computed mean and STD of W for year 1994
and 1997. Fig. 8 (year 1994) and Fig. 9 (year 1997) gave
the predicted changes of the mean of W (heavy line), its
confidence limit at level P = 95% (light line), and the mea-
sured W (open circles). From these plots, we found that
fairly good agreement between simulation and measure-
ments with measured data points falling generally within
the confidence limits except towards the later part of year
1994. Therefore, we were confident that the initial condi-
tions and overall physical assumptions in the model con-
struction were reasonable. The execution of SWS
simulation required only the input of a W measurement at
the starting time, and involved no other W measurements.
This minimized the data requirements of this model and
provided convenience for its field application.

Figs. 8 and 9 also showed that the uncertainty of the SWS
prediction increased with lead-time of prediction. The
increase in uncertainty is typical for large lead-times (Or
odel of soil water regime in the crop ..., J. Hydrol. (2006),
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Figure 8 The measured points, predicted mean and confi-
dential band at P = 95% of SWS for year 1994.
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and Groeneveld, 1994; Aboitiz et al., 1986; and Luo et al.,
1998). The predicted uncertainty may be used for risk anal-
ysis in making irrigation scheduling decisions. Depending on
the needs of a particular application, the predictive algo-
rithm we derived can give a confidence limit at any required
confidence level. This is an obvious advantage of our model
over that presented by Aboitiz et al. (1986) and Or and Gro-
eneveld (1994). Depending on the availability of the mea-
surement data, we performed predictions with look-ahead
periods of 60 and 75 days in year 1994 and 1997, respec-
tively. The predicted confidence band width of SWS at
P = 95% at the end of the prediction periods are 19.8 mm
in 1994 and 21.9 mm in 1997. Therefore the model perfor-
mance is quite reliable even with such a long lead-time in
prediction. For crop irrigation management, such a long
lead-time is sufficient for any irrigation planning.

Concluding remarks

This paper presents a stochastic model for predicting the
dynamic changes of soil water storage in the main root
zone of crops for regions where the randomness in rainfall
is insignificant. It provides a convenient tool for character-
izing the soil water storage change and its variability for
aiding decision making in scheduling irrigation. The sto-
chastic model of ETr adopted in current paper was limited
to a continuous form of order 1 autoregressive model. If
we treated the normalized residual part of ETr as a contin-
uous white noise process, the proposed stochastic model
Please cite this article in press as: Luo, Y et al., A stochastic m
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will reduce to a simpler form as given in Luo et al.
(1998). Further, it is also possible to adopt the methodol-
ogy proposed by Graupe and Krause (1973) for transforming
a more complex ARMA (1,1) process into an AR(1) model.
Such a transformation may enable us to apply the proposed
approach to describe a more complex stochastic process.
When applying the proposed model to a specific site, sto-
chastic modeling of reference evapotranspiration and
parameterization of crop coefficients, soil water stress
coefficient and percolation formulation need to be per-
formed in advance. In addition, the uncertainty of soil
water storage measurements should also be evaluated
and tested. In the current work, the parameterization
and validation of the proposed model were carried out
on only a limited dataset at a specific site; further devel-
opment should be done with different soils, crops, and
weather conditions.
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